Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.913
Filtrar
1.
J Microbiol Methods ; 220: 106927, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561125

RESUMO

Bacterial biofilms form when bacteria attach to surfaces and generate an extracellular matrix that embeds and stabilizes a growing community. Detailed visualization and quantitative analysis of biofilm architecture by optical microscopy are limited by the law of diffraction. Expansion Microscopy (ExM) is a novel Super-Resolution technique where specimens are physically enlarged by a factor of ∼4, prior to observation by conventional fluorescence microscopy. ExM requires homogenization of rigid constituents of biological components by enzymatic digestion. We developed an ExM approach capable of expanding 48-h old Proteus mirabilis biofilms 4.3-fold (termed PmbExM), close to the theoretic maximum expansion factor without gross shape distortions. Our protocol, based on lytic and glycoside-hydrolase enzymatic treatments, degrades rigid components in bacteria and extracellular matrix. Our results prove PmbExM to be a versatile and easy-to-use Super-Resolution approach for enabling studies of P. mirabilis biofilm architecture, assembly, and even intracellular features, such as DNA organization.


Assuntos
Biofilmes , Proteus mirabilis , Proteus mirabilis/química , Bactérias , DNA , Microscopia de Fluorescência
2.
Sci Rep ; 14(1): 8563, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609487

RESUMO

Heavy metal accumulation increases rapidly in the environment due to anthropogenic activities and industrialization. The leather and surgical industry produces many contaminants containing heavy metals. Cadmium, a prominent contaminant, is linked to severe health risks, notably kidney and liver damage, especially among individuals exposed to contaminated wastewater. This study aims to leverage the natural cadmium resistance mechanisms in bacteria for bioaccumulation purposes. The industrial wastewater samples, characterized by an alarming cadmium concentration of 29.6 ppm, 52 ppm, and 76.4 ppm-far exceeding the recommended limit of 0.003 ppm-were subjected to screening for cadmium-resistant bacteria using cadmium-supplemented media with CdCl2. 16S rRNA characterization identified Vibrio cholerae and Proteus mirabilis as cadmium-resistant bacteria in the collected samples. Subsequently, the cadmium resistance-associated cadA gene was successfully amplified in Vibrio species and Proteus mirabilis, revealing a product size of 623 bp. Further analysis of the identified bacteria included the examination of virulent genes, specifically the tcpA gene (472 bp) associated with cholera and the UreC gene (317 bp) linked to urinary tract infections. To enhance the bioaccumulation of cadmium, the study proposes the potential suppression of virulent gene expression through in-silico gene-editing tools such as CRISPR-Cas9. A total of 27 gRNAs were generated for UreC, with five selected for expression. Similarly, 42 gRNA sequences were generated for tcpA, with eight chosen for expression analysis. The selected gRNAs were integrated into the lentiCRISPR v2 expression vector. This strategic approach aims to facilitate precise gene editing of disease-causing genes (tcpA and UreC) within the bacterial genome. In conclusion, this study underscores the potential utility of Vibrio species and Proteus mirabilis as effective candidates for the removal of cadmium from industrial wastewater, offering insights for future environmental remediation strategies.


Assuntos
Cólera , Infecções Urinárias , Vibrio , Humanos , Proteus mirabilis/genética , Cádmio/toxicidade , Sistemas CRISPR-Cas/genética , RNA Ribossômico 16S , Águas Residuárias , RNA Guia de Sistemas CRISPR-Cas , Vibrio/genética
3.
Vet Res ; 55(1): 50, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594755

RESUMO

Proteus mirabilis is a commensal bacterium dwelling in the gastrointestinal (GI) tract of humans and animals. Although New Delhi metallo-ß-lactamase 1 (NDM-1) producing P. mirabilis is emerging as a threat, its epidemiology in our society remains largely unknown. LHPm1, the first P. mirabilis isolate harboring NDM-1, was detected from a companion dog that resides with a human owner. The whole-genome study revealed 20 different antimicrobial resistance (AMR) genes against various classes of antimicrobial agents, which corresponded to the MIC results. Genomic regions, including MDR genes, were identified with multiple variations and visualized in a comparative manner. In the whole-genome epidemiological analysis, multiple phylogroups were identified, revealing the genetic relationship of LHPm1 with other P. mirabilis strains carrying various AMR genes. These genetic findings offer comprehensive insights into NDM-1-producing P. mirabilis, underscoring the need for urgent control measures and surveillance programs using a "one health approach".


Assuntos
Doenças do Cão , Infecções por Proteus , Cães , Humanos , Animais , Antibacterianos/farmacologia , Proteus mirabilis/genética , Animais de Estimação/genética , Infecções por Proteus/veterinária , Infecções por Proteus/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Genômica , República da Coreia , Testes de Sensibilidade Microbiana/veterinária , Plasmídeos , Doenças do Cão/genética
4.
Acta Vet Hung ; 72(1): 11-20, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38578700

RESUMO

Proteus mirabilis is a common enteric bacterium in livestock and humans. The increase and spread of the antimicrobial resistant P. mirabilis is considered alarming worldwide. Transmission mainly occurs through consumption of contaminated poultry products. We investigated antimicrobial resistance (AMR) and virulence markers in broiler chicken-originated P. mirabilis isolates from 380 fecal samples. Phenotypic AMR test was performed against seventeen different antimicrobials. Genotypic AMR test was performed to detect sixteen different AMR genes. The samples were also tested for the presence of eight different virulence genes and biofilm formation. P. mirabilis was isolated in 11% of the samples, with significantly high multidrug-resistant (MDR) prevalence (63%). All isolates were resistant to tetracycline (100%). The combined disc method indicated that all isolates were of extended-spectrum beta-lactamase (ESBL) producers, which was compatible with the high blaTEM prevalence (95%). This was associated with blaTEM being responsible for more than 80% of ampicillin resistance in enteric pathogens. The absence of phenotypically carbapenem-resistant isolates was compatible with the very low prevalences of blaOXA (2%) and blaNDM (0%). All isolates were positive for pmfA, atfA, hpmA, and zapA (100%) virulence genes, while biofilm formation rate (85%) indicated high adherence abilities of the isolates.


Assuntos
Antibacterianos , Proteus mirabilis , Humanos , Animais , Antibacterianos/farmacologia , Virulência , Proteus mirabilis/genética , Galinhas , beta-Lactamases/genética , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana/veterinária
5.
J Bacteriol ; 206(4): e0003124, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38534115

RESUMO

A hallmark of Proteus mirabilis infection of the urinary tract is the formation of stones. The ability to induce urinary stone formation requires urease, a nickel metalloenzyme that hydrolyzes urea. This reaction produces ammonia as a byproduct, which can serve as a nitrogen source and weak base that raises the local pH. The resulting alkalinity induces the precipitation of ions to form stones. Transcriptional regulator UreR activates expression of urease genes in a urea-dependent manner. Thus, urease genes are highly expressed in the urinary tract where urea is abundant. Production of mature urease also requires the import of nickel into the cytoplasm and its incorporation into the urease apoenzyme. Urease accessory proteins primarily acquire nickel from one of two nickel transporters and facilitate incorporation of nickel to form mature urease. In this study, we performed a comprehensive RNA-seq to define the P. mirabilis urea-induced transcriptome as well as the UreR regulon. We identified UreR as the first defined regulator of nickel transport in P. mirabilis. We also offer evidence for the direct regulation of the Ynt nickel transporter by UreR. Using bioinformatics, we identified UreR-regulated urease loci in 15 Morganellaceae family species across three genera. Additionally, we located two mobilized UreR-regulated urease loci that also encode the ynt transporter, implying that UreR regulation of nickel transport is a conserved regulatory relationship. Our study demonstrates that UreR specifically regulates genes required to produce mature urease, an essential virulence factor for P. mirabilis uropathogenesis. IMPORTANCE: Catheter-associated urinary tract infections (CAUTIs) account for over 40% of acute nosocomial infections in the USA and generate $340 million in healthcare costs annually. A major causative agent of CAUTIs is Proteus mirabilis, an understudied Gram-negative pathogen noted for its ability to form urinary stones via the activity of urease. Urease mutants cannot induce stones and are attenuated in a murine UTI model, indicating this enzyme is essential to P. mirabilis pathogenesis. Transcriptional regulation of urease genes by UreR is well established; here, we expand the UreR regulon to include regulation of nickel import, a function required to produce mature urease. Furthermore, we reflect on the role of urea catalysis in P. mirabilis metabolism and provide evidence for its importance.


Assuntos
Infecções por Proteus , Infecções Urinárias , Animais , Camundongos , Proteus mirabilis/genética , Urease/metabolismo , Níquel/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Ureia/metabolismo
6.
Mol Biol Rep ; 51(1): 446, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532199

RESUMO

BACKGROUND: Bacterial pathogens are the causative agents of some of the most serious disease problems in cultured fish causing mortalities and severe economic losses. This study was conducted to determine the occurrence and characterization of Proteus mirabilis from infected farmed African catfish in Ogun State, Nigeria. METHODOLOGY: The bacteria were isolated from diseased farmed African catfish (Clarias gariepinus, n=128) with clinical signs of skin haemorrhages, ulceration, and ascites purposively sampled from farms within three senatorial districts namely Ogun East (OE; n=76), Ogun Central (OC; n=30) and Ogun West (OW; n=22) in Ogun State. The isolates were identified based on morphological characteristics, biochemical tests, and 16S rRNA gene characterisation. The 16S rRNA gene sequences were analysed using BLAST, submitted to the NCBI database, and an accession number was generated. RESULTS: The occurrence of Proteus mirabilis in infected Clarias gariepinus was 13.16%, 25%, and 31.25% in OE, OC, and OW, respectively. A significantly higher incidence was recorded in OW compared to other areas. All the Proteus mirabilis isolates were motile, gram-negative, short rod, non-lactose fermenter bacteria that showed positive catalase reactions, negative oxidase, and positive for methyl-red. The Proteus mirabilis isolates (OP 594726.1) were closely related to isolates from Pakistan, Italy, and India CONCLUSIONS: We conclude that Proteus mirabilis colonises farmed Clarias gariepinus in Ogun State, Nigeria and the identified strain showed an evolutionary relationship with known pathogenic NCBI reference strains from other countries.


Assuntos
Peixes-Gato , Proteus mirabilis , Animais , Proteus mirabilis/genética , Peixes-Gato/genética , Nigéria , RNA Ribossômico 16S/genética , Bactérias/genética
7.
Front Cell Infect Microbiol ; 14: 1347173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500503

RESUMO

Proteus mirabilis, a prevalent urinary tract pathogen and formidable biofilm producer, especially in Catheter-Associated Urinary Tract Infection, has seen a worrying rise in multidrug-resistant (MDR) strains. This upsurge calls for innovative approaches in infection control, beyond traditional antibiotics. Our research introduces bacteriophage (phage) therapy as a novel non-antibiotic strategy to combat these drug-resistant infections. We isolated P2-71, a lytic phage derived from canine feces, demonstrating potent activity against MDR P. mirabilis strains. P2-71 showcases a notably brief 10-minute latent period and a significant burst size of 228 particles per infected bacterium, ensuring rapid bacterial clearance. The phage maintains stability over a broad temperature range of 30-50°C and within a pH spectrum of 4-11, highlighting its resilience in various environmental conditions. Our host range assessment solidifies its potential against diverse MDR P. mirabilis strains. Through killing curve analysis, P2-71's effectiveness was validated at various MOI levels against P. mirabilis 37, highlighting its versatility. We extended our research to examine P2-71's stability and bactericidal kinetics in artificial urine, affirming its potential for clinical application. A detailed genomic analysis reveals P2-71's complex genetic makeup, including genes essential for morphogenesis, lysis, and DNA modification, which are crucial for its therapeutic action. This study not only furthers the understanding of phage therapy as a promising non-antibiotic antimicrobial but also underscores its critical role in combating emerging MDR infections in both veterinary and public health contexts.


Assuntos
Bacteriófago P2 , Bacteriófagos , Animais , Cães , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteus mirabilis , Biofilmes , Bacteriófagos/genética
8.
Microbiol Res ; 282: 127633, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364524

RESUMO

This study aims to deepen our understanding of the drug resistance and virulence characterization among gut bacteria in asymptomatic and diarrheal captive rhesus macaques (RMs). A total of 31 samples, including 8 asymptomatic RMs, 10 diarrheal RMs, and 1 dead RM, were collected from a breeding base in Sichuan, China, for bacterial isolation. As a result, Escherichia coli (n = 23), Klebsiella (n = 22), Proteus mirabilis (n = 10), Enterococcus (n = 10), Salmonella (n = 2), and Staphylococcus (n = 2) were isolated. All isolates were subjected to antimicrobial susceptibility testing and whole-genome sequencing, among which some E. coli, K. pneumoniae, and P. mirabilis were subjected to the Galleria mellonella and mice infection testing. The antimicrobial resistance rates of levofloxacin, enrofloxacin, and cefotaxime in diarrhea-associated isolates were higher than those of asymptomatic isolates. Consistent with the antimicrobial resistance phenotype, diarrheal isolates had a higher prevalence rate to qnrS1, blaTEM-1B and blaCTX-M-27 than asymptomatic isolates. Furthermore, compared with asymptomatic isolates, diarrheal isolates demonstrated a higher pathogenic potential against larvae and mice. Additionally, sequence types (STs) 14179-14181 in E. coli and ST 625 and ST 630-631 in Klebsiella aerogenes were firstly characterized. Our evidence underscores the considerable challenge posed by high rates of bacterial drug resistance in the effective treatment of diarrheal RMs.


Assuntos
Escherichia coli , Klebsiella pneumoniae , Animais , Camundongos , Antibacterianos/farmacologia , Macaca mulatta , Proteus mirabilis/genética , Virulência , Farmacorresistência Bacteriana , Diarreia/veterinária , Testes de Sensibilidade Microbiana
9.
Curr Microbiol ; 81(4): 100, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372801

RESUMO

This study aimed to assess the activity of AgNPs biosynthesized by Fusarium oxysporum (bio-AgNPs) against multidrug-resistant uropathogenic Proteus mirabilis, and to assess the antibacterial activity of catheters coated with bio-AgNPs. Broth microdilution and time-kill kinetics assays were used to determine the antibacterial activity of bio-AgNPs. Catheters were coated with two (2C) and three (3C) bio-AgNPs layers using polydopamine as crosslinker. Catheters were challenged with urine inoculated with P. mirabilis to assess the anti-incrustation activity. MIC was found to be 62.5 µmol l-1, causing total loss of viability after 4 h and bio-AgNPs inhibited biofilm formation by 76.4%. Catheters 2C and 3C avoided incrustation for 13 and 20 days, respectively, and reduced biofilm formation by more than 98%, while the pristine catheter was encrusted on the first day. These results provide evidence for the use of bio-AgNPs as a potential alternative to combat of multidrug-resistant P. mirabilis infections.


Assuntos
Nanopartículas Metálicas , Mirabilis , Cateteres Urinários , Proteus mirabilis , Prata/farmacologia , Antibacterianos/farmacologia
10.
Vet Med Sci ; 10(2): e1371, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38357843

RESUMO

BACKGROUND: Proteus mirabilis has been identified as an important zoonotic pathogen, causing several illnesses such as diarrhoea, keratitis and urinary tract infections. OBJECTIVE: This study assessed the prevalence of P. mirabilis in broiler chickens, its antibiotic resistance (AR) patterns, ESBL-producing P. mirabilis and the presence of virulence genes. METHODS: A total of 26 isolates were confirmed as P. mirabilis from 480 pooled broiler chicken faecal samples by polymerase chain reaction (PCR). The disk diffusion method was used to evaluate the antibacterial susceptibility test, while nine virulence genes and 26 AR genes were also screened by PCR. RESULTS: All 26 P. mirabilis isolates harboured the ireA (siderophore receptors), ptA, and zapA (proteases), ucaA, pmfA, atfA, and mrpA (fimbriae), hlyA and hpmA (haemolysins) virulence genes. The P. mirabilis isolates were resistant to ciprofloxacin (62%) and levofloxacin (54%), while 8 (30.7%) of the isolates were classified as multidrug resistant (MDR). PCR analysis identified the blaCTX-M gene (62%), blaTEM (58%) and blaCTX-M-2 (38%). Further screening for AMR genes identified mcr-1, cat1, cat2, qnrA, qnrD and mecA, 12%, 19%, 12%, 54%, 27% and 8%, respectively for P. mirabilis isolates. The prevalence of the integron integrase intI1 and intI2 genes was 43% and 4%, respectively. CONCLUSIONS: The rise of ciprofloxacin and levofloxacin resistance, as well as MDR strains, is a public health threat that points to a challenge in the treatment of infections caused by these zoonotic bacteria. Furthermore, because ESBL-producing P. mirabilis has the potential to spread to humans, the presence of blaCTX -M -producing P. mirabilis in broilers should be kept under control. This is the first study undertaken to isolate P. mirabilis from chicken faecal samples and investigate its antibiotic resistance status as well as virulence profiles in South Africa.


Assuntos
Galinhas , Proteus mirabilis , Animais , Humanos , Proteus mirabilis/genética , Virulência/genética , Levofloxacino , Matadouros , África do Sul/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Ciprofloxacina
11.
BMC Res Notes ; 17(1): 40, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287416

RESUMO

OBJECTIVE: Proteus mirabilis is related to serious infections. The present study was designed to investigate the minimum inhibitory concentration (MIC) of silver nanoparticles (AgNPs) and zinc oxide nanoparticles (ZnONPs) and cytotoxicity among P. mirabilis isolates recovered from clinical samples in Shiraz. RESULTS: A total of 100 P. mirabilis isolates were screened by biochemical tests and polymerase chain reaction (PCR). Also, 25 (25%) and 7 (7%) isolates were positive for extended-spectrum beta-lactamase (ESBLs) and carbapenemase, respectively. Synthesized nanoparticles were characterized by UV-vis spectrum, X-ray diffraction (XRD), and electron microscopy. The average size of AgNPs and ZnONPs in the present study is 48 and < 70 nm, respectively. The MIC and the MBC of the ZnONPs were in the range of 31.25 µg/ml and 62.5 µg/mL, respectively. Also, for AgNPs, the MIC and the MBC were in the range of 7.8 µg/mL and 15.6 µg/mL, respectively. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in a primary culture of fibroblast L929 cells for this MIC indicated biocompatibility and low cytotoxicity of Ag NPs and for ZnONPs indicated significant cytotoxicity. Also, a MIC of AgNPs can be used as a therapeutic concentration without the effect of cytotoxicity in human cells.


Assuntos
Proteínas de Bactérias , Nanopartículas Metálicas , Óxido de Zinco , beta-Lactamases , Humanos , Prata/farmacologia , Prata/química , Antibacterianos/farmacologia , Antibacterianos/química , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Proteus mirabilis , Nanopartículas Metálicas/química , Irã (Geográfico) , Testes de Sensibilidade Microbiana
12.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256182

RESUMO

Flomoxef (FMX) may be a potential alternative to carbapenems for dogs infected with Enterobacterales-producing extended-spectrum ß-lactamase (ESBL-E). However, the appropriate dosage of FMX in dogs with ESBL-E infections has yet to be established. This study was carried out to establish appropriate treatment regimens for FMX against ESBL-E infections in dogs using a pharmacokinetics-pharmacodynamics (PK-PD) approach. Five dogs were intravenously administered at a bolus dose of FMX (40 mg/kg body weight). Serum concentrations of FMX were calculated with high-performance liquid chromatography-tandem mass spectrometry, and then applied to determine PK indices based on a non-compartmental model. The cumulative fraction of response (CFR) was estimated based on the dissemination of minimum inhibitory concentrations among wild-type ESBL-E from companion animals. From the results, the dosage regimens of 40 mg/kg every 6 and 8 h were estimated to attain a CFR of >90% for wild-type isolates of ESBL-producing Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis for dogs. By contrast, all regimens had a CFR of <80% for ESBL-producing Enterobacter cloacae. Our results indicated that dosage regimens of 40 mg/kg FMX every 6 and 8 h can be a non-carbapenem treatment for canine infections of ESBL-producing Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis, but not for those of ESBL-producing Enterobacter cloacae.


Assuntos
Antibacterianos , Gammaproteobacteria , Cães , Animais , Antibacterianos/farmacologia , Cefalosporinas , Carbapenêmicos , Enterobacter cloacae , Escherichia coli , Klebsiella pneumoniae , Proteus mirabilis , beta-Lactamases
13.
Sci Rep ; 14(1): 943, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200115

RESUMO

Infectious urolithiasis is a type of urolithiasis, that is caused by infections of the urinary tract by bacteria producing urease such as Proteus mirabilis. Lactobacillus spp. have an antagonistic effect against many pathogens by secreting molecules, including organic acids. The aim of the study was to determine the impact of Lactobacillus strains isolated from human urine on crystallization of urine components caused by P. mirabilis by measuring bacterial viability (CFU/mL), pH, ammonia release, concentration of crystallized salts and by observing crystals by phase contrast microscopy. Moreover, the effect of lactic acid on the activity of urease was examined by the kinetic method and in silico study. In the presence of selected Lactobacillus strains, the crystallization process was inhibited. The results indicate that one of the mechanisms of this action was the antibacterial effect of Lactobacillus, especially in the presence of L. gasseri, where ten times less P. mirabilis bacteria was observed, compared to the control. It was also demonstrated that lactic acid inhibited urease activity by a competitive mechanism and had a higher binding affinity to the enzyme than urea. These results demonstrate that Lactobacillus and lactic acid have a great impact on the urinary stones development, which in the future may help to support the treatment of this health problem.


Assuntos
Doenças Transmissíveis , Cálculos Urinários , Urolitíase , Humanos , Proteus mirabilis , Urease , Urolitíase/prevenção & controle , Antibacterianos/farmacologia , Ácido Láctico , Lactobacillus
14.
Int J Food Microbiol ; 412: 110570, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38219343

RESUMO

Proteus mirabilis is an opportunistic pathogen linked to human urinary tract infections, and is potentially present as a foodborne pathogen within poultry products, including broiler chickens. This report outlines the inhibitory impacts of protocatechuic acid (PCA) on P. mirabilis isolated from a broiler slaughterhouse in China as well as its biofilm. This investigation encompasses assays related to motility and adhesion, bacterial metabolic activity, extracellular polymer (EPS) production, and scavenging capacity. The findings demonstrated that PCA reduced biofilm formation by 61 %. Transcriptomics findings identified that PCA limited the expression of genes like PstS that promote adhesin formation, rbsA and RcsB that alter bacterial chemotaxis, lipopolysaccharide synthesis genes LpxA and EptB, and cell wall synthesis genes MurF and MrdA, and affects the Regulator of Capsule Synthesis (RCS) two-component modulation system. Weighted gene co-expression network analysis (WGCNA) was conducted to identify the core genes. Furthermore, the binding sites of PCA to cytochrome oxidases cydA and cydB, two subunits of ATP synthase atpI and atpH, and ftsZ, which regulate bacterial division, were predicted via molecular docking. Metabolome analysis determined that PCA critically influenced coenzyme A biosynthesis, nucleotide metabolism, alanine, aspartic acid, and glutamate metabolic pathways of P. mirabilis. Therefore, PCA impacts metabolism within bacteria via various pathways, limiting the levels of extracellular polymer and bacterial viability to hinder biofilm formation. Additionally, we prepared an antibacterial plastic film containing protocatechuic acid using PVA as the monomer and CNC as the reinforcing agent. We examined the mechanical and antibacterial properties of this film. When used to wrap chicken, it reduced the total number of colonies, slowed the deterioration of chicken, and maintained the freshness of chicken. In conclusion, the information outlined in this study complements our comprehension of P. mirabilis inhibition by PCA and provides clues for the reduction of foodborne infections associated with P. mirabilis.


Assuntos
Genes Essenciais , Hidroxibenzoatos , Proteus mirabilis , Animais , Humanos , Proteus mirabilis/genética , Simulação de Acoplamento Molecular , Galinhas/genética , Antibacterianos/farmacologia , Biofilmes , Polímeros
15.
Microbiol Spectr ; 12(2): e0120923, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38197656

RESUMO

Proteus mirabilis can transfer transposons, insertion sequences, and gene cassettes to the chromosomes of other hosts through SXT/R391 integrative and conjugative elements (ICEs), significantly increasing the possibility of antibiotic resistance gene (ARG) evolution and expanding the risk of ARGs transmission among bacteria. A total of 103 strains of P. mirabilis were isolated from 25 farms in China from 2018 to 2020. The positive detection rate of SXT/R391 ICEs was 25.2% (26/103). All SXT/R391 ICEs positive P. mirabilis exhibited a high level of overall drug resistance. Conjugation experiments showed that all 26 SXT/R391 ICEs could efficiently transfer to Escherichia coli EC600 with a frequency of 2.0 × 10-7 to 6.0 × 10-5. The acquired ARGs, genetic structures, homology relationships, and conservation sequences of 26 (19 different subtypes) SXT/R391 ICEs were investigated by high-throughput sequencing, whole-genome typing, and phylogenetic tree construction. ICEPmiChnHBRJC2 carries erm (42), which have never been found within an SXT/R391 ICE in P. mirabilis, and ICEPmiChnSC1111 carries 19 ARGs, including clinically important cfr, blaCTX-M-65, and aac(6')-Ib-cr, making it the ICE with the most ARGs reported to date. Through genetic stability, growth curve, and competition experiments, it was found that the transconjugant of ICEPmiChnSCNNC12 did not have a significant fitness cost on the recipient bacterium EC600 and may have a higher risk of transmission and dissemination. Although the transconjugant of ICEPmiChnSCSZC20 had a relatively obvious fitness cost on EC600, long-term resistance selection pressure may improve bacterial fitness through compensatory adaptation, providing scientific evidence for risk assessment of horizontal transfer and dissemination of SXT/R391 ICEs in P. mirabilis.IMPORTANCEThe spread of antibiotic resistance genes (ARGs) is a major public health concern. The study investigated the prevalence and genetic diversity of integrative and conjugative elements (ICEs) in Proteus mirabilis, which can transfer ARGs to other hosts. The study found that all of the P. mirabilis strains carrying ICEs exhibited a high level of drug resistance and a higher risk of transmission and dissemination of ARGs. The analysis of novel multidrug-resistant ICEs highlighted the potential for the evolution and spread of novel resistance mechanisms. These findings emphasize the importance of monitoring the spread of ICEs carrying ARGs and the urgent need for effective strategies to combat antibiotic resistance. Understanding the genetic diversity and potential for transmission of ARGs among bacteria is crucial for developing targeted interventions to mitigate the threat of antibiotic resistance.


Assuntos
Conjugação Genética , Proteus mirabilis , Proteus mirabilis/genética , Filogenia , Resistência a Múltiplos Medicamentos , Elementos de DNA Transponíveis , Antibacterianos/farmacologia , Escherichia coli/genética , Medição de Risco
16.
Anal Biochem ; 688: 115473, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38280678

RESUMO

Urinary tract infections (UTIs) are a serious public health problem. They can be caused by a number of pathogens, but the most common are Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis and Staphylococcus saprophyticus. Bacterial infection is diagnosed by examining a urine sample. The presence of bacteria or white blood cells is determined under a microscope or a urine culture is performed. In this study, we used a panel of chromogenic substrates for the qualitative determination of specific enzyme activity in the urine of patients with confirmed bacterial infection and/or urinary tract disease. Healthy patients were used as a control group. It turned out that in the case of Escherichia coli infection, we observed the activity of the caspase subunit of the human 20S proteasome. We did not observe similar correlations for infections with other types of bacteria.


Assuntos
Infecções Bacterianas , Infecções Urinárias , Humanos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Infecções Urinárias/diagnóstico , Bactérias , Escherichia coli , Proteus mirabilis , Antibacterianos
17.
Artigo em Inglês | MEDLINE | ID: mdl-38056223

RESUMO

Recently, populations of Chinese spiny frogs (Quasipaa spinosa), an important amphibian species in China, have decreased, mainly due to a disease caused by the gram-negative bacteria Proteus mirabilis. To elucidate the immune response of the frogs, this study aimed to identify novel candidate genes functionally associated with P. mirabilis infection-induced "rotting skin" disease. Chinese spiny frogs were infected with P. mirabilis, and the skin transcriptome was sequenced using the MGISEQ-2000 platform. A total of 233,965 unigenes were obtained by sequencing, of which 27.23 % were known genes. Screening of differentially expressed genes (DEGs) indicated 210 unigenes differentially expressed after P. mirabilis infection, of which 132 unigenes were up-regulated, and 78 unigenes were down-regulated. Using Kyoto Encyclopedia of Genes and Genomes enrichment analysis, DEGs were identified as enriched in signal pathways, such as oxidative phosphorylation, apoptosis, and the Janus kinase-signal transducer and activator of transcription pathway. Of the DEGs, there was a significant upregulation of the colony stimulating factor 2 receptor beta common subunit, interleukin 2 receptor subunit gamma, cathelicidin antimicrobial peptide, interleukin-17 receptor E, receptor-interacting serine/threonine-protein kinase 3, and pulmonary surfactant-associated protein D immune genes following P. mirabilis infection. Conversely, scavenger receptor cysteine-rich domain-containing group B protein, tumor protein p53 inducible nuclear protein 2, suppressor of cytokine signaling 2, and metalloreductase STEAP3 were significantly downregulated. In conclusion, the first skin transcriptome database of Chinese spiny frogs was established, and several immune genes were identified to elucidate the pathogenic mechanism of "skin rot" in Chinese spiny frogs and other cultured frogs.


Assuntos
Proteus mirabilis , Dermatopatias , Animais , Proteus mirabilis/genética , Perfilação da Expressão Gênica , Transcriptoma , Anuros , Ranidae/genética
19.
PLoS One ; 18(12): e0289989, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38060499

RESUMO

The present study aims to investigate the antigenic cross reactivity between the receptor from Proteus mirabilis and spermatozoa against a common sperm immobilization factor, SIF, by calorimetric and competitive inhibition studies, and the immunogenicity of this receptor to evoke the formation of antisperm antibodies and their subsequent role in fertility outcome. The sperm binding receptor from Proteus mirabilis (PM-SBR) was extracted from ultrasonicated cell debris by treating it for 12 h at 37°C with 1 M NaCl. After being purified by gel permeation chromatography, its molecular weight as determined by SDS-PAGE was observed to be ≈ 47 kDa. The detrimental impacts of Sperm immobilizing factor (SIF) on spermatozoa viz. motility, viability, and morphology were mitigated when SIF was preincubated with various concentrations of PM-SBR. Using isothermal titration calorimetry, the entropy of the SIF-PM-SBR interaction was found to be -18.31 kJ/mol, whereas the free energy was 28.4 J/mol K. FTIR analysis was used to evaluate the binding interactions between PM-SBR and SIF. In addition, mice that were administered antibodies against PM-SBR were unable to conceive, in contrast to mice that were administered Phosphate buffer saline (PBS) or pre-immunization serum as controls. In light of this, we may conclude that anti-PM-SBR antibodies act as anti-sperm antibodies. Our work found that molecular mimicry between Proteus mirabilis and spermatozoa may cause antisperm immune reactivity. As a result of an immunological response to PM-SBR, infected individuals may produce antibodies against an epitope similar to one found on spermatozoa which helps in developing new strategies for managing autoimmune responses and infertility.


Assuntos
Infertilidade , Proteus mirabilis , Masculino , Animais , Camundongos , Sêmen/química , Espermatozoides/fisiologia , Motilidade dos Espermatozoides , Anticorpos
20.
Front Cell Infect Microbiol ; 13: 1216798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965267

RESUMO

Introduction: Proteus mirabilis is a key pathobiont in catheter-associated urinary tract infections (CA-UTIs), which is well known to form crystalline biofilms that occlude catheters. Urease activity alkylates urine through the release of ammonia, consequentially resulting in higher levels of Mg2+ and Ca2+ and formation of crystals. In this study, we showed that N-acetyl cysteine (NAC), a thiol antioxidant, is a potent urease inhibitor that prevents crystalline biofilm formation. Methods: To quantify urease activity, Berthelot's method was done on bacterial extracts treated with NAC. We also used an in vitro catheterised glass bladder model to study the effect of NAC treatment on catheter occlusion and biofilm encrustation in P. mirabilis infections. Inductively-coupled plasma mass spectrometry (ICP-MS) was performed on catheter samples to decipher elemental profiles. Results: NAC inhibits urease activity of clinical P. mirabilis isolates at concentrations as low as 1 mM, independent of bacterial killing. The study also showed that NAC is bacteriostatic on P. mirabilis, and inhibited biofilm formation and catheter occlusion in an in vitro. A significant 4-8log10 reduction in viable bacteria was observed in catheters infected in this model. Additionally, biofilms in NAC treated catheters displayed a depletion of calcium, magnesium, or phosphates (>10 fold reduction), thus confirming the absence of any urease activity in the presence of NAC. Interestingly, we also showed that not only is NAC anti-inflammatory in bladder epithelial cells (BECs), but that it mutes its inflammatory response to urease and P. mirabilis infection by reducing the production of IL-6, IL-8 and IL-1b. Discussion: Using biochemical, microbiological and immunological techniques, this study displays the functionality of NAC in preventing catheter occlusion by inhibiting urease activity. The study also highlights NAC as a strong anti-inflammatory antibiofilm agent that can target both bacterial and host factors in the treatment of CA-UTIs.


Assuntos
Infecções por Proteus , Infecções Urinárias , Humanos , Cateterismo Urinário , Acetilcisteína/farmacologia , Urease , Infecções por Proteus/tratamento farmacológico , Infecções por Proteus/prevenção & controle , Infecções por Proteus/microbiologia , Proteus mirabilis , Infecções Urinárias/prevenção & controle , Infecções Urinárias/microbiologia , Cateteres , Inflamação/prevenção & controle , Anti-Inflamatórios/farmacologia , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...